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2 Detailed Summary of Technical Results

2.1 Overview and Background

The main charter of this contract is the implementation and experimentation with motion
planning algorithms that emphasize tbe exact combinatorial and purely geometric approach.

Motion planning is considered to be one of the major research areas in robotics, and is
one of the main stages in the design and implementation of autonomous intelligent systems,
which is an important long-range goal in robotics research. Motion planning is one of the
basic capabilities that such a system must possess. In purely geometric terms, the simplest
version of the problem can be stated as follows. The system is given complete information
about the geometry of the environment in which it is to operate (and of its own structure),
and has to process it so that, when commanded to move from its current position to some
target position, it can determine whether it can do so without colliding with any of the
obst;acles around it, and if so plau (and execute) such a motion.

There are many variants of the problem. A few of those are: motion planning in
environments that are only partially known to the system, compliant motion planning that
allows contact with obstacles, which might be unavoidable due to measurement errors,
optimal motion planning, motion planning with "kino-dynamic" constraints, and motion
planning amidst moving obstacles. Still, even the simplest, static, and purely geometric
version stated above is far from being simple, and poses serio.:s challenges in the design of
efficient and robust algorithms.

Theoretical studies of motion planning have been abundant in the past decade, and the
Principal Investigator has been involved with many of them. It was shown that the main
parameter that controls the computational complexity of the problem is the number k of
degrees of freedom of the system. When k is arbitrarily large (e.g. in coordinated motion
planning of many independent bodies), the problem usually becomes computationally in-
tractable [9,10. There are several general techniques (one by Schwartz and Sharir [17] and
a more recent and more efficient one by Canny [5]) thit have been derived for solving the
problem for arbitrary systems, but their worst case running time is exponential in k, and
even for available commercial systems with k = 6 degrees of freedom, these algorithms are
very complex and unacceptably inefficient for practical use.

This situation has caused subsequent research to proceed in two divergent directions.
One was to abandon the exact algorithmic approach and design heuristic and approximating
techniques in which the geometry of the space of available placements of the system is aot
computed accurately but only coarsely approximated, or is "bypassed" by other heuri:.tl2.
techniques. The resulting systems are generally not robust - they might miss free motions
and declare incorrectly the desired destination as unreachable. Moreover, even with the
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heuristic shortcuts, these systems are still inefficient, and most of them perform well (within
the above mentioned limitations) only on 'toy' examples consisting of only a few obstacles.

The other approach was to continue to cling to the exact combinatorial algorithmic
paradigm, but begin by attacking problems with a small number of degrees of freedom,
analyze them thoroughly, and develop efficient algorithms whose worst-case running time
is even better than that of the general technique of Canny. This approach, which is the one
followed in our research, is a 'bottom-up' approach, that aims to solve simpler systems first,
in the hope that these solutions will be usable as routines in the solutions of more general
problems. Moreover, this approach leads to better understanding of the co-abina orial
structure of the spac3 of free system placements, and can therefore result in solutions that
are faster than those yielded by heuristic techniques.

Although many motion planning problems with very few degrees of freedom are not very
realistic, some of them do correspond to problems that can arise in practice. For example,
the problem involving a rigid polygonal object moving in the plane amidst a collection of
polygonal obstacles ii actually the problem of navigating a robot vehicle, and has only three
degrees of freedom. Navigating a circular robot has only two degrees of freedom. These
problems have been successfully attacked by the exact algorithmic technique, and a battery
of efficient techniques for their solutions has been developed (see [16], [11], [14], [12], [8]).
Some of these solutions have in fact been implemented and tested (see e.g. [13], and also
(4]), although no real production system has resulted from these experiments, as far as we
know.

In the present research we have chosen another class of problems involving three degrees
ot treedom and have the potential of being applicable in real-life problems. This class
inivolves a rigid object flying through 3-dimensional space, by translation only, amidst a
collection of polyhedral obstacles (which are static, and whose geometry is known to the
system, as in our basic assumptions made above). In full generality, the flying motion of
a rigid object in 3-space involves 6 degrees of freedom (with rotation) and is too complex,
in the present state of the field, for exact and practical algorithmic solution. The case of
allowing only translations can still be used in practice in several ways: (i) If the size of
the moving object is much smaller than the sizes of the obstacles, we can approximate the
object by a point, which has only the three degrees of freedom of translation. (ii) If the
moving object has a generally rounded shanpe, we can approxi mateit by a moving bail, again
with only three degrees of freedom. (iii) We can use the solution for translational -notion
planning to obtain an approximate solution of the general problem, by discretizing over the
range of available orientations, solve the purely translational problem for each orientation,
and look for purely rotational passages between adjacent orientations; this technique has
been recently proposed for planar motions in [1], and it seems applicable to 3-dimensional
problems as well.

This problem has already been discussed in a pioneering paper on algorithmic motion
planning [15] 11 years ago. However, no analysis, nor even any consideration of algorithmic
efficiency, has been provided there. Recently the problem has been studied and analyzed
in several papers. The case of a moving point has been studied in [6]. It was shown
there that if the polyhedral obstacles consist of n faces and r convex edges (that is reflex
edges from the point of view of free space), then the free space can be decomposed into
O(n + r2 ) tetrahedra, in time Q(nr -+ r 2 logn). Having this decomposition available in the
form of a 'connectivity graph', whose vertices are these tetrahedra and whose edges connect
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pairs of adjacent tetrahedra, facilitates a reduction of the motion planning problem to a
simrle (and discrete) path searching problem in that graph. The solution given in [61 is
slightly complicated and requires the use of a few sophisticated algorithmic techniques. A
generalization of the problem to the case of an arbitrary translating polyhedral object has
been studied in [2], which showed that the comple.xity, of a single connected component of
the free configuration space is at most 0(n7 /3 ), which is a significant improvement over
the naive (and worst-case tight) 0(n 3) bound on the complexity of the entire configuration
space. A major theoretical breakthrough of our research in the past year is an improvement of
this bound to 0((n 2 log n) [3]. Note that a single component of the free configuration space,
namely the one that contains the starting position of the robot, is all we need, because all

placements reachable from this starting position must necessarily lie in that component.
The paper [21 also presents a randomized algorithm to compute a single component in time

that is close to 0(n'/ 3 ). By plugging our improved complexity bound into this algorithm,
one can show that its running time drops down to close to 0(n 2 ), which constitutes a

significant and near-optimal result, since in the worst case the complexity of a single cell
can indeed be quadratic.

2.2 S 3 ;tern Description

The implementation of our 3-d motion planning system has been carried out by a full-
time programmer (Ms. Estarose Wolfson) at the Robotics Lab of the Courant Institute at

New York University. Currently, the implementation of the simple case of a moving point
has been completed, and extensive testing of it has been coud,'i i•, in addition, we have
developed a graphics output package that displays varioue aspmcts of the system output
on a Silicon Graphics MRIS workstation. Using this package wxe have produced a demo
videotape illustrating the performance of the system, and the f.gures shown below display
some snapshots of this videotape.

A detailed description of our system was given in last year's report, and we repeat it
here in somewhat condensed form, which also includes the illustration of the performance of

the algorithm by several output figures. A full report on our system is given in the technical
report [18] that we are currently preparing.

A major principle in the system design waas to implemcnt a system whose worst case

running time matches the best available theoretical solutions (in our case, that of [6]),
but to trade sophisticated algorithmic techniques by simpler methods whenever possible
(without hurting the overall asymptotic running time). For example, consider the spatial
point location problem, which arises a lot in our implementation. A simple version of the
problem asks to determine, for an arbitrary query point, the obstacle face it 'sees' directly

above it. There are several recent efficient techniques for solving this problem, but they are
very cumbersome and practically inefficient to implement. In our system we used a simpler
solution that proceeds by traversing faces of the obstacles in a certain order until the one
lying directly above the point is found. This method is very simple to implement, and its
total cost turns out in our case to be within the allowed theoretical bound. This policy has
been followed in all other steps of our algorithm.

Here is a brief sketch of the structure of our system (see also last year's report).

OBJECTIVES and TERMINOLOGY: Given any two points in 3-space and a set of
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polyhedral obstacles having a total of N faces, we wish to determine whether there is a
path between these points (avoiding intersections with the obstacles) and if so find one such
path. This is the motion planning problem of moving a point through a three dimensional
space consisting of non-.overlapping obstacles. To do this, the complementary space of the
obstacles (with respect to some large imaginary enclosing box), called the free space, is
decomposed into convex units (cells), which form the nodes of a connectivity graph whose
edges connect pairs of adjacent cells. These cells have walls consisting of z-vertical planar
faces and top and bottom 'covers' each consisting of facets from a unique obstacle. Thus
these basic cell units and the connectivity among them will allow us to travel through
free space to reach our destination, provided it lies in the same connected component of
free space as our initial position (which is the same as belonging to the same connected
component of the connectivity graph).

The general technique, as developed in [6], [2], and others, is to construct a vertical
cell decomposition of the free space. Such a decomposition is obtained by erecting vertical
walls up and down from each reflex obstacle edge (i.e. an edge whose dihedral angle within
the free space is greater than 180 degrees). These walls are extended until they hit other
obstale faces (or, failing this, to infinity). Collectively, they partition free space into convex
subcells of the form discussed above, and their adjacency through the vertical walls gives
us the desired connectivity graph.

We have modified this method so that walls arc erected only from full reflex edges,
which are edges e with the property that the vertical plane passing through e is such that the
obstacle containing e lies (locally) only on one side of the plane. This coarser decomposition
yields cells that are only "z-convex". meaning that any z-vcrticai line iutersects such a cell
in a connected segment. It is still relatively easy to navigate through such a cell, and in
practice the saving in this coarser schcme is expected to be significant. We denote by r the
total number of reflex edges and by K the number of full reflex and inverse reflex edges
(defined in analogy to reflex edges except that the free space lies locally on one side of the

vertical plante through the edge).

A key concept in our method is that of obstacle silhouettes, which are loci of points on
the obstacle boundaries where the z-vertical cross section of the obstacle has a discontinuity.
Such a silhouette consists of a connected closed cycle of full reflex obstacle edges, inverse
reflex edges, or a combination of such edges.

The silhouettes contain most of the information necessary to achieve our coarse cell
decomposition, and the total size of all silhouettes is only proportional to R and not to N,
again implying significant savings in practice (and theory).

In addition, we use the notion of half reflex edges, which are all the remaining reflex
ed:ýes, whose two adjacent faces lie on oppcsite sides of the vertical plane passing through
the edge. Thus, if we were to erect vertical wails from such an edge (which we do not), the
wall would extend only upwards or only downwards into free space. Half reflex edges are
used in the later stages of the program to plan passages through the resulting cells.

The input to the system consists of the obstacles. These are arbitrarily complex 3-d
polyhedra, that may have holes, tunnels, handles, etc. We assume that they are given by
their boundary representation, where each face is already triangulated, and comes with its
outward-directed normal vector.

METHOD and PROGRAM:
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For lack of space, we only give a very brief outline of the system.

(1) We calculate the obstacle silhouettes by a breadth first search on the vertices and edges
of each obstacle, and connect them locally into appropriate lists.

(2) We next find the "critical points" of the silhouette Interactions by performing a planar
sweep along the x direction on the xy-projections of the silhouettes. The critical points
are the x minimum and maximum points of the branches of the silhouettes, the midpoints
where tunnel holes change from being inside to outside the obstacle (inverse to reflex edges
of silhouette) and vice-versa, and the intersection points of two projected silhouettes whose
obstacles axe adjacent in the z-direction of 3-space. The running time of this stage is
O(N + (R + S)logX), where X < R? is the number of chains and S < R2 is the number of
intersections between them.

(3) For each cell silhouette we complete the construction of the z-verticai walls erected
from the silhouette edges. For this we need to find their top and bottom intersections with
the obstacles by 'tumbling' along the path of the chain of edges of the silhouette from one
critical point to another, knowing that between any two critical points the z neighbor above
(and below) the edge will remain on the same obstacle patch;

(4) We are now in a position to actually construct our cells and the connectivity between
them. We split each chain of reflex edges at its critical points, and then recombine the
resulting chain fragments (and the vertical walls attached to them) to form the contours
of new coherent cells. The recombination is done locally around each critical point, by
attaching chain fragments and their walls to adjacent fragments-and-walls meeting them at
this point, and by determining locally the geometry of the resuting incident cells.

(5) The cells just produced are "z-convex" - any vertical line intersects such a cell in a
connected interval, but their xy-projections can still have an arbitrary polygonal shape. The
next step decomposes our cells further into "more convex" subcells, each being z-convex and
having a convex zy projection. This is achieved by an appropriate planar sweep through
the zy projection of each cell, and can be done in total time O(NR).

(6) Next we find certain actual paths through the cells. These paths connect some center
point within each cell to entry / exit points on the vertical walls separating the cell from
adjacent ones. To do this, we pass a vertical plane through the center point p and some
entry/exit point q, and trace the intersections of this plane with the top and bottonr covers
simultaneously, using our tumbling method. Our strategy ii to remain always at mid-
height between the current top and bottom faces. We thus obtain a polygoaal path whose
zy-projection is a striaght segment. We collect all these paths and store them in a data file,
to be used by the final motion planning phase. With some care, the cost of this step can
also be made O(NR).

(7) The Motion planning phase: Finally, given a source point p and a target point q,
we want to determine whether there exists a free path between p and q, and, if so, produce
such a path. For each of the points p, q, we find the cell containing the point or indicate
that the point is not in free space (in which case no motion planning has to be done). For
points in free space, let cl, c2 denote the cells containing p and q respectively. We also find
the path from p to the center of c, and from the center of c2 to q. We next test if these tk,
cells are in the same connected component of our connectivity graph. If this is the case,
we find a path in the graph connecting c1 and c2 by a simple breadth first search. We then
construct the actual path from p to q by concatenating the subpat0Q from p to the center
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of c1 , from the center of each cell to an exit point on the vertical wall separating it from the
next cell, from that point to the center of the next ceil, and finally from the center of c2 to
q. The output of this phase is simply a sequence of points, given by their coordinates, so
that between any two consecutive points the path proceeds along a straight segment. The
running time of this step, and the size of the output path, are both O(N + R 2 ).

(8) Graphical output: We have implemented a graphic.al output package that reads the
files produced by our system and transforms them into several video output sequences,
displayed on a Silicon Graphics IRIS workstation at our Lab. The output shows the given
polyhedral scene, where the obstacles are shown both in solid form and in triangulated wire-
frame form, and where the initial and final placements of the moving robot are highlighted.
The output collision-free path planned by the system is shown, and then the viewer is
"taken on a ride on the robot" as it moves along the path. During this ride, the view of
the current cell is constantly displayed, where the vertical boundaries of the cell are shown
as cage-like bars; each time we cross through such a boundary, the former cell vanishes
and is replaced by the new cell we arc entering. The figures given below show snapshots
of the video produced bv this package. This video output has been used to create a demo
videotape of our system, which is enclosed with this report.
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2.3 Supplemental Theoretical Research

Besides work on the system proper, we have also continued to work on related problems in
motion planning and in computational geometry. Some parts of this work are closely rele-
vant to the research project, while other parts cover more basic problems in computational
geometry. The main result related to the research project is the improved bound, already
mentioned above, on the complexity of a single cell in an arrangemert of triangles in 3-space,
which in turn leads to an efficient algorithm for motion planning of the type we study in the
project. Among our other results that axe more relevant to robotics, we mention: improved
bounds and efficient algorithms for certain motion planning problems with three degrees of
freedom, analysis of the complexity of the union of polyhedra in space, upper envelopes of
Voronoi surfaces and their applications in pattern recognition, optimal placement problems
of polygons in a polygonal environment, computing a single face in an arrangement of line
segments, and some extensions of this algorithm, a note on an earlier motion planning algo-
rithm, and miscellaneous results in computational geometry, including efficient techniques
for ray and circle shooting in polygonal regions, improved techniques for output-sensitive
hidden surface removal, geometric location and other optimization problems, a new ran-
domized algorithm for linear programming and its analysis, and applications of a new space
partitioning technique. A bibliography of publications that acknowledge support by the
grant (in which these works appear) is given in Section 3 below.
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4 Description of Research Transitions and DoD Interac-
tions

None so far.
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5 Description of Software and Hardware Prototypes

Please see Section 2 for a detailed description of the system being implemented. It is our
hope that the system could be commercialized. Likely 'customers' might be the space
industry (for programming flying robots), and CAD and related systems (enhancing such a
system with navigation capabilities through 3-D scenes).
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PLATE 1

Figure A: Figure B:

A view of the polyhedral Another view of the environment.
environment consisting of The free space is decomposed
21 polyhedral obstacles, into simple cells with an
268 corners, 768 edges, adjacency graph connecting
and 512 facets. them.

Figure C: Figure D:

A path generated by our Another path with a skeleton
algorithm between two view of the obstacles. A path
given points. After goes to the center of each cell
cell decomposition, the it traverses and out through a
algorithm can generate a center point on a connecting
path in a fraction of a wall to the next cell.
second, thus essentially
in real time.



PLATE 2

Figure A: Figure B-

A perspective view from A snapshot of a more complex
the robot as it traverses path and the set of cells it
the space along the still has to traverse. The
generated path. The black pathos route from the center
and green bars represent of a common wall is quite
the vertical boundary of visible here.
the current cell through
which the robot is
passing.

Figure C: Figure D:

Another ride on the robot A snapshot of the path
through space along a and the set of cells it
different path, showing still has to traverse at
another cell it currently the same moment and the
traverses. In this example, same situation as in
there are 392 cells in the Figure C.
environment decomposition,
which were generated in
5 seconds on a SUN Sparc II
workstation.


